四川加华智氢新能源科技有限公司氢能行业分析报告书(摘录)
四川加华智氢新能源科技有限公司氢能行业分析报告书(摘录)
Sichuan Jiahua Intelligent Hydrogen New Energy Technology Co., Ltd. Hydrogen Industry Analysis (Excerpt)
一、氢在能源革命中的重要角色 THE ROLE OF HYDROGEN IN THE ENERGY TRANSITION
氢能在由化石能源向洁净能源转变的能源革命中具有极为重要的作用。
Hydrogen gas’ role in the energy transition has been ascribed enormous potential – offering a solution to several of the challenges faced in making the transition a reality. It could essentially replace fossil fuels with a clean energy source across the economy, with only water as a by-product. It is important to note though that hydrogen is not a source of energy but is an energy carrier that is derived from another source of energy.
(一)氢能优点 ADVANTAGES OF HYDROGEN
l 洁净,燃烧时仅释放水和能量;
l 每单位重量出巡的能量比大多数其他燃料多,即能量密度大;
l 可由低碳物质制造;
l 可作为燃料,也可作为能量的储存形式;
l 可用于工业减少碳排放;
l 有利于解决能源安全与空气质量问题。
Hydrogen has many advantages.
l Burns cleanly, releasing only water and energy.
l Stores more energy per unit of weight than most other fuels.
l Can be made from low-carbon sources.
l Can be used as a fuel, to transport energy from one place to another, as a form of energy storage or as a chemical feedstock.
l Can be used to decarbonize “hard to abate” sectors with few alternatives.
l Offers wider benefits for energy security, industrial strategy and air quality.
(二)氢的分类 TYPES OF HYDROGEN
根据生产方式的不同、环保程度的不同,氢气被分为几种类型。
l 棕氢:利用气化过程从煤中提取的氢气。
l 灰氢:使用蒸汽甲烷重整从天然气中提取的氢气。
l 蓝氢:棕氢或灰氢(均为化石制氢)进一步使用碳捕获技术得到的氢气。通过这种方式可以捕获、储存或再利用高达90%的碳排放。
l 绿氢:使用可再生能源电解(水)产生的氢气。这一过程不产生碳。
l 粉氢:利用核能电解水产生的氢气。虽是低碳,但不是可再生能源。也被称为紫氢或红氢。
为了实现净零排放,各国共同的目标是减少化石制氢,向低碳制氢(蓝氢)、零碳制氢(绿氢)转变。仅蓝氢、绿氢是洁净的氢气。
Hydrogen is the lightest and most abundant element on the planet, but is not easily available as a gas, and so needs to be produced using different resources and processes. These combinations are often described in different colors – with brown, grey, blue, green and pink the main types. As almost all production of hydrogen today from high-carbon sources (grey or brown), the aim is to scale the other ‘colors’ to be able to produce ‘clean hydrogen’.
l Brown hydrogen
Hydrogen extracted from coal, using the process of gasification
l Grey hydrogen
Hydrogen extracted from natural gas, using steam-methane reforming
l Blue hydrogen
Fossil-based (brown or grey) hydrogen production with carbon capture technology. Up to 90% of emissions can be captured and stored / reused this way.
l Green hydrogen
Hydrogen produced by electrolysis (of water) using renewable energy sources. This process produces zero carbon (renewable) hydrogen.
l Pink hydrogen
Hydrogen produced by electrolysis using nuclear power. Low carbon, but not renewable energy source. Also known as purple or red hydrogen.
l Clean hydrogen
Typically refers to blue and green hydrogen.
二、全世界的共同目标——净零排放 NET ZERO EMISSIONS
“净零排放”是指产生的温室气体排放和从大气中去除的温室气体实现总体平衡。
很多经济体已为在本世纪中期实现净零排放这一目标制定政策,包括G7成员国及欧盟。欧盟的已立法确定了在2050年实现净零排放的目标,德国、法国、英国、瑞典、丹麦、西班牙等国家也通过了国家层面的立法或公布了政策目标。
在北美,加拿大将立法确定于2050年实现净零排放,美国也公布了同样的目标。在中美洲及南美洲,智利正在立法过程中,而阿根廷、巴西等过也公布了净零排放的政策目标。
在亚太地区,日本和韩国已公布了净零排放的目标,新西兰也通过立法确定了目标。
非洲及中东需要应对能源安全、能源获取的压力。目前,仅尼日利亚和南非公布了净零排放目标,但该地区仍有国家在筹划涉及净零排放目标的长期计划。
综上,净零排放目标已在国际社会达成共识,得到了大部分国家的支持与大力推进。
“Net zero emissions” refers to achieving an overall balance between greenhouse gas emissions produced and greenhouse gas emissions taken out of the atmosphere.
Many major economies – including all members of the Group of Seven (G7) plus the European Union (EU) – have made political or policy commitments to achieving net zero CO2 emissions by mid-century. The EU has legislated for a goal of net zero by 2050, and five European countries (Denmark, France, Germany, Hungary, Luxembourg, Spain, Sweden and the United Kingdom) have already passed national legislation, while more countries have declared net zero policy goals. In North America, Canada is in the final stages of enacting legislation targeting net zero by 2050, and the Biden administration in the United States has declared a similar goal. Many other countries are also in the process of legislating.
三、中国的目标 CHINA’S AIM
中国作为国际社会具有重要影响力的一员,将坚定不移地为实现碳中和的目标而努力。中国国家主席习近平多次就这一目标发表讲话。
应对气候变化《巴黎协定》代表了全球绿色低碳转型的大方向,是保护地球家园需要采取的最低限度行动,各国必须迈出决定性步伐。中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。
——2020年9月22日,习近平在第七十五届联合国大会一般性辩论上的讲话
我已经宣布,中国力争于2030年前二氧化碳排放达到峰值、2060年前实现碳中和。实现这个目标,中国需要付出极其艰巨的努力。我们认为,只要是对全人类有益的事情,中国就应该义不容辞地做,并且做好。中国正在制定行动方案并已开始采取具体措施,确保实现既定目标。中国这么做,是在用实际行动践行多边主义,为保护我们的共同家园、实现人类可持续发展作出贡献。
——2021年1月25日,习近平在世界经济论坛“达沃斯议程”对话会上的特别致辞
推进碳达峰碳中和是党中央经过深思熟虑作出的重大战略决策,是我们对国际社会的庄严承诺,也是推动高质量发展的内在要求。
——2021年12月8日,习近平在中央经济工作会议上的讲话
实现“双碳”目标,不是别人让我们做,而是我们自己必须要做。我国已进入新发展阶段,推进“双碳”工作是破解资源环境约束突出问题、实现可持续发展的迫切需要,是顺应技术进步趋势、推动经济结构转型升级的迫切需要,是满足人民群众日益增长的优美生态环境需求、促进人与自然和谐共生的迫切需要,是主动担当大国责任、推动构建人类命运共同体的迫切需要。
——2022年1月24日,习近平在十九届中央政治局第三十六次集体学习时的讲话
习近平在中国共产党第二十次全国代表大会上的报告中指出:积极稳妥推进碳达峰碳中和。实现碳达峰碳中和是一场广泛而深刻的经济社会系统性变革。立足我国能源资源禀赋,坚持先立后破,有计划分步骤实施碳达峰行动。完善能源消耗总量和强度调控,重点控制化石能源消费,逐步转向碳排放总量和强度“双控”制度。推动能源清洁低碳高效利用,推进工业、建筑、交通等领域清洁低碳转型。深入推进能源革命,加强煤炭清洁高效利用,加大油气资源勘探开发和增储上产力度,加快规划建设新型能源体系,统筹水电开发和生态保护,积极安全有序发展核电,加强能源产供储销体系建设,确保能源安全。完善碳排放统计核算制度,健全碳排放权市场交易制度。提升生态系统碳汇能力。积极参与应对气候变化全球治理。
除了大国责任,还有对国家经济发展、能源安全的考虑。
l 中国是世界上最大的能源生产国及消费国,同时也是最大的二氧化碳排放国,占据了全球温室效应气体排放量的28%。中国的人均排放量(约每年7吨)超过了美国。
l 为实现其发展目标,中国经济需要持续高速发展。随着向后工业化、以服务业为基础的经济的转型,大多数发达国家的能源消耗已经稳定。但中国要实现其中期发展目标,就需要在2035年之前将其经济规模及人均GDP翻一番。因此,可以预见未来相当长的时间里中国的能源消耗将持续升高。
l 中国的主要能源来源是煤炭,2021年中国消耗的能源中煤炭占56%,石油占18.5%,天然气占9%。2021年中国煤炭发电能力为1297GW,超过其发电能力总和的50%。
l 中国目前是以外贸为导向的经济,能源密集型商品的生产远远超过国内消费需求。在国内谋实转型之策、夯实稳定之基、抓实发展之要的背景及国际经济挑战的背景下,尤其考虑到新冠的影响,中国提出了“构建以国内大循环为主体、国内国际双循环相互促进的新发展格局”。然而,中国在向此模式转变的同时,外贸在可预见的将来仍然是中国经济的重要组成部分。中国贸易伙伴的降排目标及其设置的碳排放强度相关的进口限制将对中国产生影响。
l 中国拥有几种主要能源密集型商品的全球最大生产能力,这些商品包括钢铁、铝、水泥、塑料、甲醇和氨。中国生产的这些商品,大多数占到全球产量的50%以上。这些产业的能源消耗占中国能源消耗的约60%。这些行业广泛使用煤炭,近几年使用量还在不断增加。中国高速发展的化工、石化行业也是如此,2019年中国冶金行业煤炭消耗量增长了7%,化工行业煤炭消耗量增长了11%。
综上,中国的能源需求随着经济发展不断增长。为了达到碳中和目标、保证国家能源安全与经济发展,需要大力支持、发展氢能产业。
l China is the world’s largest producer and consumer of energy and is also the world’s largest emitter of CO2, accounting for 28% of global greenhouse gas emissions. China’s per capita emissions (around 7 tones per capita per year) exceed those of the United States.
l China’s economy will need to continue to grow significantly to meet its development objectives. In most developed countries, energy consumption has stabilized as these countries transition to a post-industrial, service-based economy. China would need to double the size of its economy and its GDP per capita by 2035 to achieve its mid-term development objectives. Energy consumption in China is expected to continue to rise for many years to come as the economy develops.
l China’s main energy source is coal, accounting for 56% of primary energy use in 2021, while shares of oil and natural gas in the mix were 18.5% and 9%, respectively (CNBS, 2022). China had 1 297 GW of coal-powered generation capacity in 2021, representing more than half of the national total power generation capacity.
l China is currently an export-oriented economy, where the production of energy-intensive commodities far exceeds national consumption. In the context of domestic reform, development, and stability goals as well as global economic challenges, especially the COVID-19 experience, China is proposing to shift that balance by adopting the concept of “dual circulation”, whereby the country would rely more heavily on domestic demand (internal circulation) to drive growth but supported by international trade and foreign investment (external circulation). However, while China is transitioning to that new model, exports will remain an important component of the economy for the foreseeable future. The emission reduction goals of China’s export partners, and the carbon intensity-related import restrictions that they may impose, are therefore also relevant to China.
l China holds the largest national production capacity for several key energy-intensive commodities, such as steel, aluminum, cement, plastics, methanol and ammonia; for many of these commodities, China accounts for more than half of total global production. The energy consumption of these industries accounts for around 60% of the country’s gross final energy use. Coal has been widely used in the industrial sector, and its consumption has been rising in recent years. This is particularly the case for China’s rapidly developing chemical and petrochemical industry: in 2019, coal consumption in China’s metallurgical sector grew 7% and in the chemicals sector grew 11%.
四、氢能行业前景 THE FUTURE OF HYDROGEN
预计到2050年,最终用户的氢气需求将增长近五倍。有氢气需求的最终用户范围很广,但化学和运输业将是主导行业。随着发展中经济体的燃料需求增长,氨和甲醇需求将增长三到四倍,但目前这一趋势尚未得到应有的关注。到2050年,在工业的推动下,中国对氢气的需求将占全球氢需求的四分之一。
Hydrogen demand in end‑use sectors is expected to grow by almost five times by 2050. Although there is a wide range of users for this demand, chemicals and transport will be the leading sectors. Ammonia and methanol demand could grow three to four times, driven by growth in developing economies and in their use as fuels, which is currently negligible.
In this 2050 future, China is responsible for about a quarter of the global hydrogen demand, driven by the industrial sector.
五、氢的应用场景 HYDROGEN APPLICATIONS
(一)分布式供能 Distributed Generation
传统的集中式供能系统采用设备集中生产,再通过输送设备将能量输送至各建筑中。在输送过程中存在能量的巨大损耗,导致能源的利用效率下降。与集中式供能系统相对应的分布式供能系统依据各建筑独立布置,可满足各建筑的能量需要,包括供电、供暖、制冷。由于分布式供暖系统不需要进行长距离的能量输送,可以避免能量损耗,提高能源的利用效率。
广东有多个山顶的5G基站就是使用了甲醇重整制氢分布式供能系统,非常稳定。四台2.5千瓦的绿色甲醇分布式供能系统就足够满足一座5G基站的用电需求,只需每隔几个月运送半车甲醇,避免了通过市电拉线到基站的高昂成本。
Distributed generation, unlike central station generation, is located at or near the point of consumption. It operates at 65-75% efficiency, a large improvement over the average of about 50% for these services when separately provided.
(二)热电联供系统 Combined heat and power (CHP)
氢能热电联供系统在装置现场利用光伏发电或者绿色甲醇重整制氢,氢气进入燃料电池中发电,利用发电时产生的热能来供应暖气和热水。利用绿色甲醇的氢能联供系统工作原理是甲醇和水在200多摄氏度产生氢气,氢气在80摄氏度和空气通过燃料电池发电。它的发电效率比内燃机燃烧发电效率高2~3倍,反应器中200多摄氏度的余热冬天可以供暖,夏天通过热泵可以制冷。一个2.5千瓦的单台机器就可以满足一个普通的别墅的供电、供暖、制冷需要。热电联供系统可实现卓越的能源效率,几乎所有的发电能量损失都用于加热水。
Combined heat and power (CHP), also known as cogeneration, is the concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations.
(三)智慧楼宇 Smart Building
变传统楼宇为氢能新能源智慧楼宇,实现分布式制氢、供电、供暖,与太阳能制氢加氢一体站配套,配备分布式能源监控信息系统,利用光伏与氢能打造零排放城市项目样板。
在住宅商业楼宇群通过光伏电池板将太阳能转化为电能,在提供清洁电力供应的同时,富余的电能通过电解槽将水中的氢提取并存储起来。电解水制取的氢气加上其它氢能供应链生产的氢气,通过氢燃料电池系统的化学反应或氢锅炉直接燃烧,将氢能转化为电能和热能,实现了零碳循环、零碳排放;热能通过热泵可转化为冷能,配合储热(冷)水设施,可为建筑供应日常用电、夏季制冷和冬季取暖。
氢能智能社区配套的太阳能制氢加氢一体站,由水电解制氢装置、多级增压机、高/中/低压储氢罐、70Mpa/35Mpa加氢机、冷却系统和控制系统等组成,制氢和加氢实现自动化控制。水电解制氢产能为每小时50标方,每天可生产107千克“绿氢”。加注能力可达250千克/天,后续加注能力可扩至500千克/天,满足每天100台氢燃料电池乘用车的高压加注需求。
Buildings are critical for the decarburization of the entire economy. Stationary fuel cells (or fuel cell micro-cogeneration) have an important potential to decarbonize the building sector today and in the future, a true no-regrets solution. They provide comfort to consumers, lower their energy bills and improve their environmental footprint already today, as they are moving from early market adoption to mass commercialization. With the increasing uptake of hydrogen, the environmental benefits will only increase in the future. Moreover, fuel cells bring additional value in terms of flexibility and demand response to the energy system as a whole.
六、绿色甲醇应用场景 GREEN METHANOL APPLICATIONS
绿色甲醇,又称“液态阳光”,指使用太阳能和风能电解水产生绿氢和绿氧制造的甲醇。绿色甲醇的制作工艺精简掉了空分和水气变换工艺单元,传统甲醇生产设施只需进行改造翻新即可用于制取绿色甲醇。
绿色甲醇可运用于绿氢储运和甲醇燃料电池系统。
利用绿色甲醇储运绿氢,成本较低且效率较高。甲醇常温常压下为液态,在零下93摄氏度也不会结冰。甲醇安全等级和汽油相近,可以通过罐车、管道进行高效率输送,所以是一种理想的储氢载体。甲醇输送成本远低于氢气气体输送成本。甲醇含氢量高达12.5%,1升甲醇与水反应可以获得143克氢气,比液氢(72克/升)产氢量还高。
目前甲醇重整制氢技术已经成熟并已在工业中广泛应用。甲醇与水蒸气在一定的温度、压力条件下,在催化剂的作用下发生甲醇裂解反应和一氧化碳的变换反应,生成氢气和二氧化碳。之后再通过变压吸附法(PSA)将氢气和二氧化碳分离,得到高纯氢气。
甲醇重整制氢具有氢收率高、能量利用合理、过程控制简单、产物成分少且易分离、制氢规模可灵活调整等特点,可实现站内制氢、现制现用,尤其在中小型用氢领域更经济、合理。
甲醇燃料电池系统除可应用于前面介绍的分布式发电、热电联供系统,还可应用于新能源汽车。
2012年,工信部先后在山西、陕西、上海、甘肃和贵州等5省份10市组织开展甲醇汽车试点运营推广。2019年工信部提出《关于在部分地区开展甲醇汽车应用的指导意见》,明确提及甲醇增程式电动汽车、甲醇燃料电池汽车产品。
将甲醇作为车辆动力来源有两种应用方式,第一种是通过甲醇重整制氢技术,将得到的氢气用于氢燃料电池发电,此过程中氢气即产即用。2017年4月,丹麦SerEnergy公司德国汉诺威展会上推出一款完成5KW甲醇重整制氢燃料电池模块增程改装的电动车,续驶里程可达800公里。第二种方式是直接将甲醇用于甲醇燃料电池。2018年10月,威马公司在江苏如皋世界氢能大会上推出一款甲醇燃料电池汽车,该车以直接甲醇燃料电池系统为“增程器”,通过甲醇发电来实现车辆动力。
相较于高安全技术门槛及高投入成本的加氢站而言,甲醇加注站更易推行。新建甲醇加注站的成本约100~300万元人民币(不含土地成本),而加油站改建为甲醇加注站的成本更低,大概为每座50~80万元人民币。
Green methanol can be made by combining sustainably produced hydrogen and CO2 captured from renewable sources. Green methanol is by far the easiest of the future fuels produced from renewable energy to store onboard, as it does not need cooling or to be stored under pressure. With further diversifying the application of green methanol as an energy carrier, energy storage, or maritime fuel, drastic market growth can be seen in coming years. A key driver for this development and advantage of the sustainable fuel is the already existing market and its already available infrastructure – built up for their grey, fossil-based siblings. Furthermore, the high energy density of green methanol makes it beneficial in comparison to liquefied hydrogen, especially for long-distance transportation and long-term storage of renewable energy.
七、碳排放交易 CARBON TRADE
碳排放权交易源于上世纪90年代经济学家提出的排污权交易概念。排污权交易是市场经济国家重要的环境经济政策,美国国家环保局首先将其运用于大气污染和河流污染的管理。截至2010年,全球已建立了20多个碳交易平台,遍布欧洲、北美、南美和亚洲市场。欧洲的场内交易平台最多,主要有欧洲气候交易所、Bluenext环境交易所等。
欧盟碳排放交易体系(ETS)是欧盟的碳交易定价机制,建立于2005年,规模正逐步扩大,它允许发电厂、工业等高污染行业为其产生的碳排放购买许可。2022年12月18日,欧洲议会和欧盟成员国就改革欧盟碳排放交易体系达成协议,明确2030年欧洲碳排放交易系统覆盖行业的合计排放量较2005年计划减少62%。为了实现这一目标,整个欧盟配额量将在2024年一次性减少9000万吨当量的二氧化碳,2026年一次性削减2700万吨。同时,从2024~2027年每年削减4.3%,2028年~2030年每年削减4.4%。此外,改革提出逐步取消对公司的免费配额,到2034年彻底取消。具体来看,到2026年免费配额将取消2.5%,2027年取消5%,2028年取消10%,2029年取消22.5%,2030年取消48.5%,2031年取消61%,2032年取消73.5%,2033年取消86%,2034年取消100%。代表欧洲议会指导谈判的德国议员Peter Liese表示,改革后的计划“向欧洲工业发出了一个明确的信号,即投资绿色技术是有回报的”。更严格的碳排放规则已使2022年的碳价达到每公吨创纪录的99.22 欧元(105美元)。
中国也在积极推进碳排放权交易。早在2016年1月,国家发展改革委办公厅就已发布《关于切实做好全国碳排放权交易市场启动重点工作的通知》。《碳排放权交易管理办法(试行)》于2020年12月25日由生态环境部部务会议审议通过,自2021年2月1日起施行。根据该办法,生态环境部按照国家有关规定建设全国碳排放权交易市场。交易主体为温室气体重点排放单位以及符合国家有关交易规则的机构和个人,交易产品为碳排放配额(生态环境部可以根据国家有关规定适时增加其他交易产品)。
2021年7月15日,上海环境能源交易所发布公告,根据国家总体安排,全国碳排放权交易于2021年7月16日开市。电力行业是首批被纳入的行业,共有2000多家重点排放单位被纳入第一个履约期,共消纳45亿吨碳配额。除发电行业之外的其他七个重点能耗行业(石化、化工、建材、钢铁、有色金属、造纸、航空)也将逐步纳入。完成八大行业覆盖后,全国碳市场的配额总量可能会从目前的45亿吨扩容到70亿吨,将覆盖我国二氧化碳排放总量的60%左右。
2022年12月22日,全国碳排放权交易市场(“全国碳市场”)累计成交额突破100亿元大关。全国碳市场正式上线以来,共运行350个交易日,碳排放配额累计成交量2.23亿吨,累计成交额101.21亿元。
Carbon trade is the buying and selling of credits that permit a company or other entity to emit a certain amount of carbon dioxide or other greenhouse gases. The carbon credits and the carbon trade are authorized by governments with the goal of gradually reducing overall carbon emissions and mitigating their contribution to climate change.
Rules for a global carbon market were established at the Glasgow COP26 climate change conference in November 2021, enacting an agreement first laid out at the 2015 Paris Climate Agreement.
Carbon trading is the central concept in many proposals to mitigate or reduce climate change and global warming. While there is no global marketplace for carbon trading, several regional jurisdictions have created their own markets for the exchange of carbon credits. The state of California operates its own cap-and-trade program. Several other U.S. states and Canadian provinces got together to create the Western Climate Initiative. In July 2021, China started a long-awaited national emissions-trading program. The program will initially involve 2,225 companies in the power sector and is designed to help the country reach its goal of achieving carbon neutrality by 2060. It will be the world's largest carbon market.
China's national carbon emission trading system - which adopts a dual city model by trading in Shanghai and accepting applications in Wuhan, Hubei province – has gone operational at the end of June in 2021.
八、绿色能源期货 CARBON EMISSION FUTURES
碳配额交易的核心是利用碳配额总量控制,加上高效率的定价和交易,使控排企业持续以低成本履约,从而助力实现“双碳”目标。在这个过程中,需要打造一个机构主导的、有至少3~5年远期价格曲线的碳配额期货市场。
欧盟碳许可交易(EUA,European Union Allowance)于2005年8月在欧洲能源交易所(EEX)挂牌上市,目前上市的品种包括排放权拍卖、即期产品、期货交易和期权交易。碳交易期货产品同时在多家交易所上市,如纳斯达克、芝加哥交易所集团、洲际交易所等。2021年全年,欧盟碳配额(EUA)总量约16亿吨,在洲际交易所(ICE)交易的欧盟碳期货交易量达152亿吨。
2021年4月19日广州期货交易所挂牌成立,2021年5月其两年期品种计划获中国证监会批准,明确将研发上市16个期货品种,包括碳排放权、电力等事关国民经济基础领域和能源价格改革的重大战略品种。
在“双碳”目标指引下,打造一个年期货交易量400亿吨规模(电力行业配额)、机构主导的、有至少3~5年远期价格曲线的、有效定价的碳配额期货市场,用(远期)价格这个看不见的手推动能源产业平稳向低碳过渡,是挑战,更是机遇。
The EUA Futures Contract is a deliverable contract where each Clearing Member with a position open at cessation of trading for a contract month is obliged to make or take delivery of Carbon Emission Allowances to or from the Union Registry in accordance with the ICE Futures Europe Regulations.
Carbon emission futures, which are an integral part of carbon trading, will be rolled out when the market further matures. The development of carbon emission futures will help to enhance the efficiency of carbon pricing and better meet the market entities' need to manage the fluctuations in carbon pricing. China Securities Regulatory Commission will help Guangzhou Futures Exchange to conduct extensive research and complete the trading rules for carbon emission contracts. Carbon emission futures will be introduced when conditions are ripe.